lie symmetry analysis for kawahara-kdv equations

نویسندگان

ali haji badali

university of bonab mir sajjad hashemi

university of bonab maryam ghahremani

university of bonab

چکیده

we introduce a new solution for kawahara-kdv equations. the lie group analysis is used to carry out the integration of this equations. the similarity reductions and exact solutions are obtained based on the optimal system method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie symmetry analysis for Kawahara-KdV equations

We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.

متن کامل

Nonlinear Stability of Solitary Travelling-wave Solutions for the Kawahara-kdv and Modified Kawahara-kdv Equations

In this paper we establish the nonlinear stability of solitary travelling-wave solutions for the Kawahara-KdV equation ut + uux + uxxx − γ1uxxxxx = 0, and the modified Kawahara-KdV equation ut + 3u 2ux + uxxx − γ2uxxxxx = 0, where γi ∈ R is a positive number when i = 1, 2. The main approach used to determine the stability of solitary travelling-waves will be the theory developed by Albert in [1].

متن کامل

A note on the stability for Kawahara-KdV type equations

In this paper we establish the nonlinear stability of solitary traveling-wave solutions for the Kawahara-KdV equation ut + uux + uxxx − γ1uxxxxx = 0, and the modified Kawahara-KdV equation ut + 3u 2ux + uxxx − γ2uxxxxx = 0, where γi ∈ R is a positive number when i = 1, 2. The main approach used to determine the stability of solitary traveling-waves will be the theory developed by Albert in [1].

متن کامل

Application of the Lie Symmetry Analysis for second-order fractional differential equations

Obtaining analytical or numerical solution of fractional differential equations is one of the troublesome and challenging issue among mathematicians and engineers, specifically in recent years. The purpose of this paper Lie Symmetry method is developed to solve second-order fractional differential equations, based on conformable fractional derivative. Some numerical examples are presented to il...

متن کامل

Nonclassical Symmetry Reductions for Coupled KdV Equations

In this paper, by using the nonclassical method, several new symmetries and solutions are obtained, which are unobtainable by Lie classical symmetries.

متن کامل

Homotopy Analysis Method for Solving Kdv Equations

A scheme is developed for the numerical study of the Korteweg-de Vries (KdV) and the Korteweg-de Vries Burgers (KdVB) equations with initial conditions by a homotopy approach. Numerical solutions obtained by homotopy analysis method are compared with exact solution. The comparison shows that the obtained solutions are in excellent agreement.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
computational methods for differential equations

جلد ۱، شماره ۲، صفحات ۱۳۵-۱۴۵

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023